BioImaging Facility Reopening

The facility has reopened. Below are post COVID rules.

Post COVID 19 Rules

- Reserving equipment at http://bookit.hunter.cuny.edu prior to use is mandatory
- There is a 15 min buffer between bookings for any instrument
- Only one person at a time can use any instrument
- Masks must be used in the facility at all times
- Keep a 6ft distance from others while in the facility
- All users must complete the Hunter COVID screening checklist. http://hunter.cuny.edu/covidscreening prior to coming to the facility
- Users must wipe down the equipment with an ethanol cleaning solution after each use. Ethanol spray bottle and paper towels are available in the facility

Several instruments are too close to be booked at the same time
The machines listed below should not be reserved at the same time. To check bookings use the resource calendar on the booking website

- Imaris 8.41 Imaging Station and the Imaris 9.12 Imaging Station
- Seahorse, Odyssey and BioTek PowerWave Microplate Reader
- GloMax®-96 Microplate Luminometer, Typhoon 9410 and Autoquant Deconvolution Station

When using the systems listed below please use the curtains that separate the instruments

- Nikon Eclipse Ti Mosaic System
- Nikon Eclipse TE 200 Calcium Ratio
- Leica TCS Confocal
- Perkin Elmer Spinning Disk Confocal
Description of the Facility

Background Overview

The BioImaging Facility at Hunter College is centered in a multi-room facility of 1024 sq. ft. located in the Biological Sciences Department on the 8th Floor of Hunter North building. A satellite facility also includes a number of instruments on the 4th Floor of the Belfer Research building (at 69th Street and York Ave). Faculty and students have access to a broad spectrum of instruments, ranging from simple white light wide-field microscopes to fluorescent multidimensional super-resolution and confocal imaging systems. The Faculty supervisor and Scientific Director is Dr. Diana P. Bratu. Dr. Lloyd Williams is the Managing Director of the facility. The facility staff has expertise in many areas of microscopy including the laser scanning confocal microscopy, super-resolution microscopy, two-photon microscopy. They are also familiar with many image analysis software packages, including, Imaris, Volocity, Autoquant, MetaMorph, and NIS-Elements. Detailed descriptions of the equipment in the facility is given below. All equipment is located at Rm 826 HN or at the 4th floor of the Belfer Research Building where designated.

To book time on any of the instruments go to http://bookit.hunter.cuny.edu
The Nikon Eclipse Ti, TIRF/SIM microscope allows the users to do both Total Internal Reflection Microscopy and SIM super-resolution microscopy. The acquisition software is Nikon NIS-Elements. The charge for this instrument is $20/hr.

The Belfer Nikon A1 Confocal Microscope is Nikon's powerful fully-automated confocal imaging system, capable of capturing high-resolution images with enhanced sensitivity. The acquisition software is NIS-Elements. The system is located at Belfer Research Building. The charge for this instrument is $20/hr.

The Nikon Eclipse Ti Mosaic System is a wide-field fluorescent microscope. It is equipped with Andor iXon EMCCD camera and a DG5 system for Optogenetics, Opto physiology, photobleaching/activation and uncaging applications. The charge for this instrument is $15/hr.
Perkin Elmer UltraView ERS

The UltraView is a spinning disk confocal microscope equipped with five laser lines, which allow visualization of GFP, RFP, and other fluorescent proteins. It is particularly useful for high-speed, multiple-probe, time-lapse experiments; NIS-Elements software is used for image acquisition and analysis.

Leica Confocal TCS SP8 DLS

The Leica TCS SP8 DLS is a dual function fluorescence microscope that can be used as a conventional laser scanning confocal microscope (LSCM) or as a lightsheet fluorescence microscope (LSFM). This machine is located in 809HN. The charge for this instrument is $20/hr.

Leica Confocal Microscope TCS SP2

The TCS SP2 Laser Scanning Spectral Confocal Microscope can do measurements of transmitted light, fluorescence, and laser scanning fluorescence imaging.
The calcium ratio imaging system consists of: a Nikon Eclipse TE 200 inverted epifluorescence microscope, Sutter Lambda 10-3 microinjection system, a Narishige micromanipulator system. The system also is equipped with imaging software with Calcium & FRET plug-in. The charge for this instrument is $10/hr.

The Nikon Ti-S microscope has a SOLA Light Engine solid state light source and a Nikon DigiSight camera. It has filter sets for DAPI FITC and RFP. The charge for this instrument is $5/hr.

The JEOL JEM-100C/CX transmission electron microscope is an advanced high-performance electron microscopy instrument.
Nikon Eclipse E 400 Color Image Analysis System

The Nikon Color Imaging system consists of a Nikon Eclipse E400 upright microscope, and Nikon DXM 1200F high-resolution digital camera. The system also utilizes Nikon Imaging Software. The charge for this instrument is $5/hr.

Imaris 8.41 Imaging Station

The Imaris Imaging station is a high-power workstation with Bitplane's Imaris Imaging software installed. Imaris provides functionality for the visualization, segmentation, and interpretation of 3D and 4D microscopy datasets. The charge for this instrument is $10/hr.

Imaris 9.12 Imaging Station

This Imaging station is a high-power workstation with Nikon's NIS-Elements Imaging software as well as Imaris 9.12 installed. The charge for these instruments is $5/hr for NIS-Elements and $10 per hour for Imaris.

Imaris 9.12 Imaging Station
Autoquant Deconvolution Station

This Imaging workstation has both AutoQuant and Nikon's NIS-Elements Imaging software installed. AutoQuant is used to deconvolve images acquired in the facility. This machine also has a floating license of Imaris 9.6. The charge for this instrument is $5/hr for Elements and $10 for Imaris.

Belfer NIS-Elements Analysis with Deconvolution

This Imaging workstation has Nikon's NIS-Elements Imaging software installed. Additionally, it has Element's deconvolution module installed. The charge for this instrument is $5/hr for Elements and $10 for Imaris.

Gemini EM Microplate Spectrofluorometer

The Molecular Devices SpectraMax Gemini EM Microplate Spectrofluorometer features top and bottom reading optics, dual excitation and dual emission, multi-wavelength scanning, well scanning, auto PMT gain and is driven by Softmax Pro software on a Windows-based controller. The charge for this instrument is $5/scan.
Amersham Biosciences Typhoon 9410

Typhoon is a highly sensitive variable-mode gel imager. The Typhoon 9410 unites the ability to detect autoradiography technology and direct imaging of chemiluminescence. The Typhoon can also be used to analyze microarrays. The charge for this instrument is $5/scan.

Belfer GE FLA 7000 Typhoon FLA

Typhoon FLA 7000 is a fast laser scanner for biomolecular imaging applications including sensitive and quantitative measurements of radioisotopic labels, chemifluorescent Western blots, and single fluorescence. The charge for this instrument is $5/scan.

Odyssey Infrared Imager

The Odyssey replaces traditional methods of analyzing western blots, chemiluminescence, and fluorescently-labeled nucleic acids. The Odyssey is equipped with two infrared channels 700 nm and 800 nm, and can thus probe two different targets in the same experiment. The charge for this instrument is $5/scan.
Biotek PowerWave Microplate Reader

PowerWave HT is a multi-channel reader for maximum speed in both 96- and 384-well plate formats. The PowerWave HT offers versatile optical capabilities, including kinetic and spectral scanning mode. Powerful Gen5 PC-based software is used for system control and data analysis. The charge for this instrument is $3/scan.

Belfer Bio Tek Synergy HTX Microplate Reader

Synergy HTX is a Multi-Mode Microplate Reader for making: absorbance, fluorescence, luminescence and AlphaScreen/AlphaLISA measurements on 6- to 384-well microplates. The charge for this instrument is $3/scan.

GloMax®-96 Microplate Luminometer

The GloMax®-96 Microplate Luminometer is a state-of-the-art Microplate Luminometer with a high sensitivity and broad wavelength range, enabling the analysis of chemiluminescent and bioluminescent assays, eliminating the need to dilute samples or manage detector-driven gain changes. The charge for this instrument is $5/scan.
The max specimen size is 55 X 70 mm and can cool samples down to -50°C.

Fluorescence Spectrometer

The facility charges $20 per hour for use of this microscope. There is a $20 minimum charge, and fractions of an hour count as whole hours. Please sign the log book.

Remote Instrumentation

Remote users can get the system through the Internet (also called remote instrumentation): remote users can get the system through the Internet (also called remote instrumentation).

PVX video conferencing for real-time consultation: During imaging experiment, PVX video conferencing system is used for real-time conversations between microscope operator and remote users to solve on-site experimental issues. Please check the following link for PVX operations:

(v) **Cell staining protocol:** A simple cell staining protocol is posted here as an example:

PVX

Cell staining protocol

E. When using the Cryostat, clean oil off the microscope objective lenses after use.

Remote Instrumentation

Operational guide

Remote Instrumentation

Remote Instrumentation

Remote Instrumentation