Bio-Imaging Facility Reopening

The facility has reopened. Below are post COVID rules.

Post COVID 19 Rules

- Reserving equipment at http://bookit.hunter.cuny.edu prior to use is mandatory
- There is a 15 min buffer between bookings for any instrument
- Only one person at a time can use any instrument
- Masks must be used in the facility at all times
- Keep a 6 ft distance from others while in the facility
- All users must complete the Hunter COVID screening checklist. http://hunter.cuny.edu/covidscreening prior to coming to the facility
- Users must wipe down the equipment with an ethanol cleaning solution after each use. Ethanol spray bottle and paper towels are available in the facility

Several instruments are too close to be booked at the same time
The machines listed below should not be reserved at the same time. To check bookings use the resource calendar on the booking website

- Imaris 8.41 Imaging Station and the Imaris 9.12 Imaging Station
- Seahorse, Odyssey and BioTek PowerWave Microplate Reader
- GloMax®-96 Microplate Luminometer, Typhoon 9410 and Autoquant Deconvolution Station

When using the systems listed below please use the curtains that separate the instruments

- Nikon Eclipse Ti Mosaic System
- Nikon Eclipse TE 200 Calcium Ratio
- Leica TCS Confocal
- Perkin Elmer Spinning Disk Confocal
Description of the Facility

Background Overview

The BioImaging Facility at Hunter College is centered in a multi-room facility of 1024 sq. ft. located in the Biological Sciences Department on the 8th Floor of Hunter North building. A satellite facility also includes a number of instruments on the 4th Floor of the Belfer Research building (at 69th Street and York Ave). Faculty and students have access to a broad spectrum of instruments, ranging from simple white light wide-field microscopes to fluorescent multidimensional super-resolution and confocal imaging systems. The Faculty supervisor and Scientific Director is Dr. Diana P. Bratu. Dr. Lloyd Williams is the Managing Director of the facility. The facility staff has expertise in many areas of microscopy including the laser scanning confocal microscopy, super-resolution microscopy, two-photon microscopy. They are also familiar with many image analysis software packages, including, Imaris, Volocity, Autoquant, MetaMorph, and NIS-Elements. Detailed descriptions of the equipment in the facility is given below. All equipment is located at Rm 826 HN or at the 4th floor of the Belfer Research Building where designated.

To book time on any of the instruments go to http://bookit.hunter.cuny.edu
Nikon Eclipse Ti, TIRF/SIM

The Nikon TIRF SIM microscope allows the users to do both Total Internal Reflection Microscopy and SIM super-resolution microscopy. The acquisition software is Nikon NIS-Elements.

The charge for this instrument is $20/hr.

Belfer Nikon A1 Confocal Microscope

The Nikon A1 Confocal microscope is Nikon's powerful fully-automated confocal imaging system, capable of capturing images with high resolution and enhanced sensitivity. The acquisition software is NIS-Elements. The system is located at Belfer Research Building.

The charge for this instrument is $20/hr.

Nikon Eclipse Ti Mosaic System

The Nikon Eclipse Ti scope is a wide-field fluorescent microscope. It is equipped with Andor iXon EMCCD camera and a DG5. It is also equipped with an Andor Mosaic/MicroPoint system for Optogenetics, Opto physiology, photobleaching/activation and uncaging applications.

The charge for this instrument is $15/hr.
Perkin Elmer UltraView ERS

The UltraView is a spinning disk confocal microscope equipped with five laser lines, which allow visualization of GFP, RFP, and other fluorescent proteins.

Leica Confocal TCS SP8 DLS

The Leica TCS SP8 DLS is a dual function fluorescence microscope that can be used as a conventional laser scanning confocal microscope (LSCM) or as a lightsheet fluorescence microscope (LSFM). The charge for this instrument is $20/hr.

Leica Confocal Microscope TCS SP2

The TCS SP2 Laser Scanning Spectral Confocal Microscope can do measurements of transmitted light, fluorescence and laser scanning fluorescence imaging. The charge for this instrument is $20/hr.
The calcium ratio imaging system consists of: a Nikon Eclipse TE 200 inverted epifluorescence microscope, Sutter Lambda 10-20 optical fiber injection system and the Nikon Eclipse C1 confocal imaging software with Calcium & FRET plug-in. The system also is equipped with a Narishige micromanipulator system.

The charge for this instrument is $10/hr.

The Nikon Ti-S microscope has a SOLA Light Engine solid state light source and a Nikon DigiSight camera. It has filter sets for DAPI FITC and RFP.

The charge for this instrument is $5/hr.

The JEOL JEM-100CX transmission electron microscope is an advanced high-performance electron microscope with a powerful accelerating voltage capacity of 100 kV and a resolution of up to 3.0 Å. It is equipped with a 10M-pixel HAMAMATSU C4742-95 digital camera for high-resolution image acquisition.
Nikon Color Imaging System

The Nikon Color Imaging system consists of a Nikon Eclipse E400 upright microscope, and Nikon DXM 1200F high-resolution digital camera. The system also utilizes Nikon Imaging Software. The charge for this instrument is $5/hr.

Imaris 8.41 Imaging Station

The Imaris Imaging station is a high-power workstation with Bitplane's Imaris Imaging software installed. Imaris provides functionality for the visualization, segmentation, and interpretation of 3D and 4D microscopy datasets. The charge for this instrument is $10/hr.

Imaris 9.12 Imaging Station

This Imaging workstation is a high-power workstation with Nikon's NIS-Elements Imaging software installed. It also has Imaris 9.12 installed. The charge for these instruments is $5/hr for Elements and $10 per hour for Imaris.
Autoquant Deconvolution Station
This Imaging workstation has both AutoQuant and Nikon's NIS-Elements Imaging software installed. AutoQuant is used to deconvolve images acquired in the facility. This machine also has a floating license of Imaris 9.6. The charge for this instrument is $5/hr for Elements and $10 for Imaris.

Belfer NIS-Elements Analysis with Deconvolution
This Imaging workstation has Nikon's NIS-Elements Imaging software installed. Additionally, it has Elements deconvolution module installed. This machine also has a floating license of Imaris 9.6. The charge for this instrument is $5/hr for Elements and $10 for Imaris.

Gemini EM Microplate Spectrofluorometer
The Molecular Devices SpectraMax Gemini EM Microplate Spectrofluorometer features top and bottom reading optics, dual band excitation, emission wavelength scanning, well scanning, auto PMT gain and is driven by Softmax Pro software on a Windows-based controller. The charge for this instrument is $5/scan.
Amersham Biosciences Typhoon 9410

Typhoon is a highly sensitive variable-mode gel imager. The Typhoon 9410 unites the ability to detect autoradiography technology and direct imaging of chemiluminescence. The Typhoon can also be used to analyze microarrays. The charge for this instrument is $5/scan.

Belfer GE FLA 7000 Typhoon FLA 7000

Typhoon FLA 7000 is a fast laser scanner for biomolecular imaging applications including sensitive and quantitative measurements of radioisotopic labels, chemiluminescent Western blots, and single fluorescence. The charge for this instrument is $5/scan.

Odyssey Infrared Imager

The Odyssey replaces traditional methods of analyzing western blots, chemiluminescence, and fluorescence. It is equipped with two infrared channels (700 nm and 800 nm), allowing it to probe two different targets in the same experiment. The charge for this instrument is $5/scan.
Biotek PowerWave Microplate Reader
PowerWave HT is a multi-channel reader for maximum speed in both 96- and 384-well plate formats. The PowerWave HT supports kinetic and spectral scanning mode. Powerful Gen5 PC-based software is used for system control and data analysis.

The charge for this instrument is $3/scan.

Belfer Bio Tek Synergy HTX Microplate Reader
Synergy HTX is a Multi-Mode Microplate Reader for making: absorbance, fluorescence, luminescence and AlphaScreen/AlphaLISA measurements on 6- to 384-well microplates.

The charge for this instrument is $3/scan.

GloMax®-96 Microplate Luminometer
The GloMax®-96 Microplate Luminometer is a state-of-the-art Microplate Luminometer for high-sensitivity bioluminescent and chemiluminescent assays. It eliminates the need to dilute samples or manage detector-driven gain changes.

The charge for this instrument is $5/scan.
The max specimen size is 55 x 70 mm and can cool samples down to -50°C.

Our service includes:
(i) Utilize WebEx to setup remote desktop sharing for microscope control.
(ii) Utilize PVX monitoring system to setup Internet video conferencing for remote control of the microscope for their experiment through a simple Internet connection. Our biomedical research. Most of the advanced high-end microscope systems (i.e., confocal & confocal microscopes for their own imaging purpose.

Nowadays, microscopic imaging techniques are becoming more and more popular in analysis package. There is a $10 minimum charge, and fractions of an hour count as whole hours.

Fee Schedule
- 0 - 4 hours $20/hour
- 10 - 24 hours $5/hour

For long time duration experiment, we have a special rate policy described as follows: in any 24 hour period

1. You must log in to use the equipment using an account created for you by the facility manager, or by experienced users in the various CTBR laboratories. For the three door when you leave, and access using a key obtained from the facility.
2. Do not wear latex gloves in the facility. Equipment is available on a first come first serve basis. You can book 3 hours slots on the calendar.
3. There is a minimum of 2 hours required for another session, thus obtaining another/2nd appointment on the calendar, say Wed 2-5pm.
4. You can come 30 minutes late you will lose your reservation. You can create an account to make reservations on the site. You will need a "Gene Center" network account to use most.
5. O. You must log on to the computers that control the equipment. Your use of the machine will then be automatically logged and you will be charged according to the fee schedule below.
6. P. Publications using data taken in this facility must acknowledge the RCMI program and the facility manager, or by experienced users in the various CTBR laboratories. For the three.
7. M. Clean oil off the microscope objective lenses after use.
8. L. Keep the microscope area clean and tidy.
9. K. Equipment is available on a first come first serve basis. You can book 3 hours slots on the calendar.
10. J. Equipment must be used only for research purposes. You may not use the equipment for personal use.
11. I. The Cryostat is available on a first come first serve basis. You can book 3 hours slots on the calendar. The Cryostat is used for/on the following:
12. H. The Cryostat is available on a first come first serve basis. You can book 3 hours slots on the calendar. The Cryostat is used for/on the following:
13. G. Do not wear latex gloves in the facility.
14. F. Clean the microscope objective lenses after use.
15. E. When using the Cryostat, keep the microscope area clean and tidy.
16. D. Equipment must be used only for research purposes. You may not use the equipment for personal use.
17. C. The facility is open for use by members of the CTBR, other CUNY departments, and.
18. B. The facility charges $20 per hour for use of the confocal. There is a $15 minimum charge, and fractions of an hour count as whole hours.
19. A. The facility charges $5 per hour for use of the Cryostat. There is a $3 per scan. Use is monitored by the.

Remote Instrumentation

Elements Analysis Workstation:
All Other Nikon Upright & Inverted Microscopes:
Leica Sp8 Confocal:
PerkinElmer Spinning Disk Microscope

Remote Instrumentation

- Operating Guide
- Webex remote control
- Typhoon 9410 Imager
- Biotek PowerWave
- 96-well plate
- Glomax 96
- 96-well plate
- 2-D DIGE and ECL Plex
- 680nm/780nm
- Endpoint/Kinetics
- 532nm/633nm
- 640nm
- 440 nm
- 514 nm
- 561 nm
- 633 nm
- 405 nm
- Solid State Laser
- Argon Ion Laser
- HeNe Laser
- 457, 488 nm
- 561 nm
- 580 nm