Your browser (Internet Explorer 7 or lower) is out of date. It has known security flaws and may not display all features of this and other websites. Learn how to update your browser.


Navigate / search

Jill Bargonetti-Chavarria

Department :
Membership :
Full Member
Core Research :
Office :
Belfer BB-400
Email :
Office Phone :
Lab Web Site :
Education :
  • B.A., SUNY College at Purchase, 1985
  • Ph.D., New York University, 1990
  • Postdoc, Columbia University, 1990-1994
Research Interest :

Signal transduction pathways converging on the tumor suppressor p53 are central in the regulation of cell growth and cell death. Conventional chemotherapeutics result in p53 checkpoint activation. However when the p53 pathway is blocked a more targeted chemotherapeutic approach will be required to result in an outcome of cell death. A focus on such targeted approaches are central to the experiments being carried out in the Bargonetti laboratory.   The work in my laboratory focuses on the molecular signal transduction pathways activated by various chemotherapeutic drugs to bring about differential activation of p53 target genes as well as to activate alternative p53-independent cell death pathways that facilitate killing resistant cancer cells. Presently this work is carried out using human cancer cell line models and with a C. elegans nematode model system.  Most recently work in my laboratory has characterized that the nucleoside analogue 8-amino-adenosine kills metastatic breast cancers independently of activating the p53-pathway.

The Bargonetti research team is using genetically engineered tools to decrease the expression of three oncogenes (i.e. Mdm2, MdmX, and oncogenic mutant p53) because we hypothesize that these biomarkers are involved in the formation of different subtypes of breast cancer. We discovered that reducing the amount of Mdm2 or mutant p53 protein in breast cancer cells reduces tumor growth and abnormal architecture in three-dimensional (3D) cell culture models. We identified that estrogen receptor positive (ER+) breast cancer cells possess an Mdm2-associated growth activation pathway.  Our work has been instrumental for introducing the concept of an estrogen driven signaling pathway that uses a non-canonical Mdm2 molecular mechanism. We are delineating the molecular targets of estrogen driven Mdm2 isoforms by using genetically engineered human breast cancer cell lines to selectively rid the cancer cells of either  Mdm2, MdmX, or oncogenic mutant p53 in order to  dissect the critical targets that promote tumorigenesis. Estrogen receptor positive (ER+) breast cancers often have high levels of Mdm2 and ER negative (ER-) breast cancers often have mutant p53. We are dissecting the relevant targets of Mdm2, MdmX, and oncogenic mutant p53 in different subtypes of breast cancer.

Many cancer cells have high levels of the oncogenic Mdm2 protein due to either increased expression or amplification of the mdm2 gene. The Bargonetti group investigates a single nucleotide polymorphism (SNP) at position 309 in the mdm2 gene that causes increased affinity for SP1, leading to Mdm2 overexpression from the gene’s P2 promoter. In cells that have this 309 SNP, the p53 pathway is compromised. High levels of Mdm2 cause increased degradation of p53 protein, however the complexity of the inhibition of p53 by Mdm2 suggests alternative mechanisms for inhibition (and not just degradation) also play a role.

Awarded the prestigious Presidential Early Career Award for Scientists and Engineers by President Bill Clinton, Bargonetti has received research grants from the National Science Foundation and the National Institutes of Health. She also won a Young Investigator Award, given by the mayor of New York City, the 1998 New York Voice Award, given to those who have made a significant improvement to the quality of life in New York City, and the 1997 Kathy Keeton Mountain Top Award from the New York branch of the NAACP. In December 2004, Working Mother magazine profiled her as one of the nation’s “Stellar Moms.” Most recently Bargonetti has been awarded a Breast Cancer Research Foundation Award for her work on the relationship between Estrogen and the inhibition of the p53 tumor suppressor pathway. 



Selected Publications :

Shtraizent N, Matsui H, Polotskaia A, Bargonetti J. Hot Spot Mutation in TP53 (R248Q) Causes Oncogenic Gain-of-Function Phenotypes in a Breast Cancer Cell Line Derived from an African American patient. Int J Environ Res Public Health. 2015 Dec 22;13(1) . pii: E22. doi: 10.3390/ijerph13010022. PMID: 2670366


Rosso M, Polotskaia A, Bargonetti J. Homozygous mdm2 SNP309 cancer cells with compromised transcriptional elongation at p53 target genes are sensitive to induction of p53-independent cell death. Oncotarget. 2015 Oct 27;6(33):34573-91. doi: 10.18632/oncotarget.5312. PMID: 26416444


Pfister NT, Fomin V, Regunath K, Zhou JY, Zhou W, Silwal-Pandit L, Freed-Pastor WA, Laptenko O, Neo SP, Bargonetti J, Hoque M, Tian B, Gunaratne J, Engebraaten O, Manley JL, Børresen-Dale AL, Neilsen PM, Prives C. Mutant p53 cooperates with SWI/SNF chromatin remodeling complex to regulate VEGFR2 in breast cancer cells. Genes Dev. 2015 Jun 15;29(12):1298-315. doi: 10.1101/gad.263202.115. Epub 2015 Jun 16. PMID: 26080815


Polotskaia, A., Xiao, G., Reynoso, K., Hendrickson, R., Martin, C., Qui, W. and J. Bargonetti. Proteome-wide Analysis of Mutant p53 Targets in Breast Cancer Identifies New Levels of Gain-of-Function that Influence PARP, PCNA and MCM4. (2015) Proc Natl Acad Sci U S A. Mar 17;112(11):E1220-9. doi: 10.1073/pnas.1416318112. Epub 2015 Mar 2. PMID: 25733866


Xiao, G., Kue, P., Bhosle and J. Bargonetti. Decarbamoyl Mitomycin C (DMC) Activates p53-independent Ataxia Telangiectasia and Rad3 Related Protein (ATR) Chromatin Eviction. (2015) Cell Cycle Epub ahead of print Jan 7. PMID: 25565400


Rosso, M., Okoro, D, and Bargonetti, J. Splice Variants of MDM2 in Oncogenesis. Subcell Biochem. (2014) 85, 247-61. PMID: 25201199


Shi, M., Shtraizent, N.,  Polotskaia, A., Bargonetti, J. H. Matsui. Impedimetric Detection of Mutant p53 Biomarker-Driven Metastatic Breast Cancers under Hyposmotic Pressure. (2014) PloS One Jan 7;9(6):e99351 PMID: 24937470


Hoffman S., Martin, D., Melendez A. and J. Bargonetti C. elegans p53 and Beclin 1 are involved in DNA repair. (2014) PloS One Feb 20;9(2):e88828. PMID: 24586407


Okoro D., Arva N., Gao, C., Polotskaia A., Puente, C., Rosso, M., and J. Bargonetti. Endogenous Human MDM2-C is Highly Expressed in Human Cancers and Functions as a p53-independent Growth Activator. (2013) PloS One Oct 11;8(10):e77643. PMID: 24147044


Catalina-Rodriguez, O., Preet, A., Kolukula, V., Furth, P., Albanese, C, Bargonetti, J. and M.L. Avantaggiati. Dietary regulation of p53 mutant levels influences tumorigenesis. (2012) Cell Cycle 11(23):4436-46 PMID:23151455


Polotskaia, A., Hoffman, S., Krett, N., Shanmugam, M., Rosen, S., and Bargonetti J. 8-Aminoadenosine activates p53-independent cell death of metastatic breast cancers. (2012) Molecular Cancer Therapeutics 11(11):2495-504 PMID:22973058


Okoro D., Rosso M., and J. Bargonetti. Splicing up Mdm2 for Cancer Proteome Diversity. Genes & Cancer 2012. Invited Review 3(3-4):311-9 PMID:23150764


"Success in Molecular Genetics: The Pink Flower" in Voices of Black American Pioneers, edited by Vernon Farmer, Greenwood Publishing Group, Westport, Connecticut (Invited Book Chapter 2012).


Freed-Pastor, W. A., Mizuno, H., Zhao, X., Langerod, A., Moon, S.-H., Rodriguez-Barrueco, R., Barsotti, A., Chicas, A., Li, W., Polotskaia, A., Bissell, M. J., Osborne, T. F., Tian, B., Lowe, S. W., Silva, J. M., Borrensen-Dale, A.-L., J., L. A., Bargonetti, J., and Prives, C. (2012) Mutant p53 Disrupts Mammary Acinar Morphogenesis via the Mevalonate Pathway, Cell 148 (1-2): 244-58 PMID: 22265415


Brekman, A., Singh K.E., Polotskaiai A., Kundu N. and Bargonetti J. A p53-independent role of Mdm2 in estrogen-mediated activation of breast cancer cell proliferation. (2011) Breast Cancer Res. 13 (1):R3: PMID: 31333569


Boamah, E.K., Brekman, A., Tomasz, M.., Myeku, N., Figueiredo-Pereira, M., Hunter, S., Meyer, J. Bhosle, R.C. and Bargonetti, J. DNA adducts of decarbamoyl mitomycin C efficiently kill cells without wild-type p53 resulting from proteasome-mediated degradation of Checkpoint Protein 1.  (2010)  Chem. Res. Toxicol. 19 (23): 1151-62 PMID: 20536192


Bargonetti, J., Champeil E. and Tomasz, M. Differential Toxicity of DNA Adducts of Mitomycin C. (2010) Invited Review Journal of Nucleic Acids. Jul 29;2010. pii: 698960: PMID: 698960


Paz, M.M., Ladwa, S., Champell, E., Liu, Y., Rockwell, S. Boamah, E.K., Bargonetti, J., Callahan, J., Roach, J., and Tomasz, M. Mapping DNA Adducts of Mitomycin and Decarbamoyl Mitomycin C in cell Lines Using Liquid Chromatography/ Electrospray Tandem Mass Spectrometry. (2008) Chem. Res. Toxicol., 21(12): 2370-2378.


Arva, N., Talbott, K., Okoro, D., Brekman, A., Qiu, W., and Bargonetti, J. Disruption of the p53-Mdm2 Complex by Nutlin-3 Reveals Different Cancer Cell Phenotypes. (2008)  Ethnicity and Disease, 18(2 Suppl 2):S2-1-8.


Boamah, E., White, D., Talbott, K., Arva, N., Berman, D., Tomasz, M., and Bargonetti, J.  (2007) Mitomycin-DNA Adducts Induce p53-Dependent and p53-Independent Cell Death Pathways.  ACS Chemical Biology 2(6): 399-407.


Hui, L., Zheng, Y., Yan, Y., Bargonetti, J., and D. Foster (2006).  Mutant p53 in  MDA-MB-231 breast cancer cells is stabilized by elevated phospholipase D activity and contributes to survival signals generated by phospholipase D.  Oncogene 25(55): 7305-10.


White, D.E., Talbott, K.E., Arva, N.C. and J. Bargonetti. (2006). Mdm2 Associates with Chromatin in the Presence of p53 and is Released to Facilitate Activation of Transcription. Cancer Research 66(7): 3463-70.


Arva, N.C. , Gopen, T.R., Talbott, K.E., Campbell, L.E., Chicas, A., White, D.E.,  Bond, G., Levine, A.  and J. Bargonetti (2005). A chromatin associated and transcriptionally inactive p53-mdm2 complex occurs in mdm2 SNP309 homozygous cells. J. Biol. Chem. 280(29):26776-87


Bond, G.L., W. Hu, E.E. Bond, H. Robins, F. Bartel, H. Taubert, P. Wuerl, K. Onel, L. Yip, S. Hwang, L.C. Strong, N.C. Arva, J. Bargonetti, G. Lozano, and A.J. Levine.  (2004).  A Single Nucleotide Polymorphism in the Mdm2 Promoter Attenuates the p53 Tumor Suppressor Pathway and Accelerates Tumor Formation in Humans.  Cell 119:591-602.


Hui, L., Abbas, T., Bargonetti, J., and D.A. Foster. (2004). Phospholipase D Elevates the Level of MDM2 and Suppresses DNA Damage-Induced Increases in p53. Mol. Cell Biology (24): 5677-5686.


Abbas, T., D. White, L.Hui, .D.A., Foster and J. Bargonetti. (2004). Inhibition of p53 transcription by down-regulation of protein kinase C delta. Journal of Biological Chemistry 279 (11):9970-9977.


Molina, M. P., C. Cain, and J. Bargonetti (2003). In Vivo footprinting and DNA Affinity Chromatography for Analysis of p53 DNA Binding Ability. Methods in Molecular Biology 234:151-70.


Abbas, T., M. Olivier,  J. Lopez,, S. Houser, G. Xiao, G. S. Kumar, M. Tomasz, and J. Bargonetti (2002). Differential activation of p53 by the various adducts of Mitomycin C. Journal of Biological Chemistry 277(43):40513-9.


Bargonetti, J. and J.J. Manfredi. (2002). Multiple roles of the tumor suppressor p53. Curr. Opin. Oncology. 14:86-91.


Houser, S., S.Koshlatyi , T. Lu , T. Gopen, and J. Bargonetti (2001). Camptothecin and Zeocin Can Differentially Increase p53 Levels During all Cell Cycle Stages. Biochem Biophys Res Commun. 289:998-1009.


Chicas, A., P. Molina, and J. Bargonetti (2000). Mutant p53 forms a complex with Sp1 on HIV-LTR DNA. Biochem Biophys Res Commun. 279:383-390.


Xiao, G., A. Chicas, M. Olivier, Y. Taya, S. Tyagi, F.R. Kramer and J. Bargonetti, (2000).  p53 requires a damage signal to activate gadd45.  Cancer Research  60: 1711-1719.


Boydston-White, S., T. Gopen, S. Houser, J. Bargonetti and M. Diem, (1999).  Infrared spectroscopy of human tissue: V. Infrared Spectroscopic studies of myeloid leukemia (ML-1) cells at different phases of the cell cycle.  Biospectroscopy 5: 219-227.


Xiao, G., D. White, and J. Bargonetti (1998).  p53 binds to a constitutively nucleosome free region of the mdm2 gene.  Oncogene 16:1171-1181.


Bargonetti, J., A. Chicas, D. White, and C. Prives (1997).  p53 represses Sp1 DNA Binding and HIV-LTR directed transcription.  Cellular & Molecular Biology 43:935-949.


Chen, X., J. Bargonetti, and C. Prives, (1995).  p53, through p 21 (WAF1/CIP1), induces cyclin D1 synthesis.  Cancer Research 55:4257-4263.


Prives, C., J. Bargonetti, G. Farmer, E. Ferrari, P. Friedlander, U. Hubsher, L. Jayaraman, N. Pavletich, and Y. Wang, (1994).  The DNA binding properties of the p53 tumor suppressor protein.  CSHS on Quan. Bio. LIX:207-213.


Bargonetti, J., J.J. Manfredi, X. Chen, D.R. Marshak, and C. Prives, (1993). A proteolytic fragment from the central region of p53 has marked sequence-specific binding activity when generated from wild-type but not from oncogenic mutant p53 protein.  Genes and Dev. 7:2565-2574.


Bargonetti, J., P.Z. Wang, and R.P. Novick, (1993). Measurement of gene expression by translational coupling: effect of copy mutations on pT181 initiator synthesis. EMBO 12:3659-3667.


Friedman, P.N., X. Chen, J. Bargonetti, and C. Prives, (1993).  The p53 protein is an unusually shaped tetramer that binds directly to DNA.  Proc. Natl. Acad. Sci. USA. 90:3319-3323.


Bargonetti, J., I. Reynisdottir, P.N. Friedman, and C. Prives, (1992). Site-specific binding of wild-type p53 to cellular DNA is inhibited by SV40 T antigen and mutant p53. Genes and Dev. 6:1886-1898.


Farmer, G., J. Bargonetti, H. Zhu, P. Friedman, R. Prywes, and C. Prives, (1992).  Wild-type p53 activates transcription in vitro. Nature 358:83-86.


Zambetti, G.P., J. Bargonetti, K. Walker, C. Prives, and A.J. Levine, (1992).  Wild-type p53 mediates positive regulation of gene expression through a specific DNA sequence element. Genes and Dev. 6:1143-1152.


Bargonetti, J., P.N. Friedman, S.E. Kern, B. Vogelstein, and C. Prives, (1991). Wild-type but not mutant p53 immunopurified proteins bind to sequences adjacent to the SV40 origin of replication.  Cell 65:1083-1091.


Prives, C., J. Bargonetti, P.N. Friedman, J.J. Manfredi, and E.H. Wang, (1991). Functional consequences of the interactions of the p53 tumor suppressor protein and SV40 large tumor antigen. CSHS on Quan. Bio. LVL:227-235.

Link to PubMed Articles: